
Welcome back
to CS529H!

Week 5

Old Piazza post of the week:

Ed meme recap:

Questions on lecture content?
Or about cats?

Circuits on the
quiz
If you want to use

something more complex

than the building blocks we

allow in a question, show

how to implement it once,

and then use that.

1

3-bit AND
diagram

 A B C

ABC

 A B C

ABC

2

Note on Quizzes

- Sorry for making quiz 1 so hard!!
- How should we do quiz clarifications?

Quiz everyone say YIPPEE!

Poll
adrp x0, :pg_hi21:feedback
ldr x0, [x0, :lo12:feedback]

How was the quiz?

A. easy

B. mostly fine

C. mostly fine, but not enough time

D. too hard, but finished mostly in

time

E. too hard and not enough time

F. too hard regardless of time

Stress
● 429H is not an easy class

○ Lots of new materials
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer of the solution
○ This is expected—we want we everyone to succeed, but the only way we can help is if you ask for it

● If you find yourself overly overwhelmed or spending more time on this class than
you think you should be, please reach out to Dr. Gheith or the TAs

○ We can help out as far as the class goes
○ We can provide other resources where we are not able to help

Mental health resource available at UT

https://cmhc.utexas.edu/

Why are we on p4 for the
third discussion

Poll
How’s your status on P4?

A. What’s P4?

B. I’ve heard of it

C. I’ve cloned the starter code

and/or looked through it

D. I’ve started planning/writing

code

E. I’m mostly done but might still

have bugs

F. P4 any% speedrun

Constant folding
● Pre-evaluating constants at compile time to simplify necessary computation

● 1 + 2 + 3 + x -> 6 + x
● How do you interpret part of an expression to simplify it?

● Bonus question: can we be sure that constant folding won’t change the output?
○ Ask Alex or Caleb about this one (or take PL next year)

● Stronger version: Just interpret everything that isn’t dependent on argc
○ Requires multiple passthroughs and probably not worth it at this point

○ Requires more complicated data structures (how to track dependencies?)

Tail recursion optimization
● Preferred paradigm especially in functional programming languages

● Used by real compilers to prevent stack overflows

● Only works when the recursive call is the final statement
○ Good: return f(x)
○ Bad: return 5 + f(x)

● How to implement in our compiler?
○ Reuse stack frame

○ Does it have to be recursive?

</p4>
(unless you still have questions at the end)

How do we represent an arbitrary truth table as a circuit?
A B C D out

1 1 1 1 1

1 1 1 0 1

1 1 0 1 0

1 1 0 0 1

1 0 1 1 1

1 0 1 0 1

1 0 0 1 1

1 0 0 0 1

0 1 1 1 1

0 1 1 0 1

0 1 0 1 1

0 1 0 0 0

0 0 1 1 1

0 0 1 0 1

0 0 0 1 0

0 0 0 0 0

CD\
AB 00 01 11 10

00 0 0 1 1

01 0 1 0 1

11 1 1 1 1

10 1 1 1 1

Karnaugh Maps

CD\
AB 00 01 11 10

00 0 0 1 1

01 0 1 0 1

11 1 1 1 1

10 1 1 1 1

C + AB̄ + AD̄ + ĀBC̄D

Fun fact

≃

≃

≃

C + AB̄ + AD̄ + ĀBC̄D

A

B

C

D

out

Any issues here?

C + AB̄ + AD̄ + ĀBC̄D

A

B

C

D

out

CD\
AB 00 01 11 10

00 0 0 1 1

01 0 1 0 1

11 1 1 1 1

10 1 1 1 1

C + AB̄ + AD̄ + ĀBC̄D + ĀBD

C + AB̄ + AD̄ + ĀBC̄D + ĀBD

A

B

C

D

out

Poll A. Yes

B. Yes

Should we do a fun activity next
week?

P5

Poll
How’s your status on P5?

A. What’s P5?

B. I’ve heard of it

C. I’ve cloned the starter code

and/or looked through it

D. I’ve started planning/writing

code

E. I’m mostly done but might still

have bugs

F. P5 any% speedrun

How to heap 2: electric boogaloo
(this is mostly just a review from last week in case you forgor)

(if we even get to cover these slides because quiz is long)

How to Heap
● Heap is hard

● Consistency
● Keep consistency through invariants

○ An invariant should be true at the beginning and end of all heap functions

○ They can be violated temporarily in the middle of these functions

○ Examples of invariants?

How to Heap
● Structs and Functions! Strunctions!

● What kind of structs might you need?

● What kind of functions might you need?

● What kind of strunctions might you need?

How to Heap
struct __attribute__((packed)) foo {

int a : 2;

int b : 6;

};

● What is sizeof(struct foo)?

● Why might you want to do this?

Debugging Tips
● How can you check your invariants?
● Diagnostics—use a heap_check() function

○ Pretty-print entire heap state
○ Check invariants programmatically
○ Call after every malloc/free

■ + Catch bugs early
■ − Makes your code slooow ⌛

○ Call only in certain cases
○ e.g. (gdb) call print_heap()

■ + Less verbose / spammy
■ − Lower coverage

● Downsize the test case
○ Small test cases are easier to debug

● Debug interactively with gdb!
○ watch and rwatch
○ (gdb) watch head
○ (gdb) rwatch (long *) 0x832a8b0
○ (gdb) watch curr_block->free

Debugging Tips
CFLAGS = -Werror -Wall -O3 -g -std=c11

changes to

CFLAGS = -Werror -Wall -O0 -g -std=c11

Why can’t we use printf debugging for the heap?

Debugging Tips - Conditional Compilation
CFLAGS = -Werror -Wall -O3 -g -std=c11

changes to

CFLAGS = -Werror -Wall -O3 -g -std=c11 -DDEBUG

Then in your code, you can have

#ifdef DEBUG

heap_check()

#endif

Questions?

 oooo$$$$$$$$$$$$oooo
 oo$$$$$$$$$$$$$$$$$$$$$$$$o
 oo$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o o$ $$ o$
 o $ oo o$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o $$ $$ $$o$
 oo $ $ "$ o$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$o $$$o$$o$
 "$$$$$$o$ o$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$o $$$$$$$$
 $$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$
 $$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$ """$$$
 "$$$""""$$$ "$$$
 $$$ o$$ "$$$o
 o$$" $$$ $$$o
 $$$ $$$" "$$$$$$ooooo$$$$o
 o$$$oooo$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ o$$$$$$$$$$$$$$$$$
 $$$$$$$$"$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$""""""""
 """" $$$$ "$$$$$$$$$$$$$$$$$$$$$$$$$$$$" o$$$
 "$$$o """$$$$$$$$$$$$$$$$$$"$$" $$$
 $$$o "$$""$$$$$$"""" o$$$
 $$$$o o$$$"
 "$$$$o o$$$$$$o"$$$$o o$$$$
 "$$$$$oo ""$$$$o$$$$$o o$$$$""
 ""$$$$$oooo "$$$o$$$$$$$$$"""
 ""$$$$$$$oo $$$$$$$$$$
 """"$$$$$$$$$$$
 $$$$$$$$$$$$
 $$$$$$$$$$"
 "$$$""""

